文章吧-经典好文章在线阅读:《寻找隐秘的维度》经典影评有感

当前的位置:文章吧 > 原创文章 >

《寻找隐秘的维度》经典影评有感

2022-05-17 02:08:54 来源:文章吧 阅读:载入中…

《寻找隐秘的维度》经典影评有感

  《寻找隐秘维度》是一部由Michael Schwarz / Bill Jersey / 执导,Ralph Abraham / Loren Carpenter / 本华·曼德博主演的一部传记 / 纪录片类型的电影,特精心从网络上整理的一些观众的影评,希望对大家能有帮助。

  《寻找隐秘的维度》影评(一):即使数学很差也可直观感受的数学之美

  简明有趣地介绍了分形几何理论极其运用与影响。

  伯努瓦·曼德尔布罗,他的人生经历,他对数学几何图像的认知。他所提出的理论,所遭遇的反对与支持。他所著的重要书籍《分形——形、机遇和维数》《自然界中的分形几何》所结局的数学问题。这些书籍问世后对艺术影视、信息技术、自然科学、医学、金融等各方面各行业的推动。

  通过影视来感受分形几何图形,特别震撼富有美感。被称未“大自然的几何学”,可以运用数学研究自然界的山、云团、海岸线、海浪、花草树木……动物的身体结构,气管的分布形式,生物的能耗……即使数学再差,也可以通过视觉效果感受到分形几何的美。

  虽然看后还是不解,分形几何,自相似性,分维(维数也可以是分数)……但是外行看热闹,照样觉得有趣、美好。

  《寻找隐秘的维度》影评(二):自然界的自相似性

  分形这样一个数学和几何学上极其优美和简洁的模型无疑是开创性的。它描述的是这样一些具有自相似性的个体——放大或缩小,分形不会让你知道你到底是在看同一个东西的局部?还是整体?因为,它和它的组成部分都太相似了。

  关于分形的核心理论,Juliet Set和Mandelbrot Set是不可不提到两个集合。它是描述分形概念的最好例子,理论上的。现实的大自然,鹦鹉螺贝壳上的螺纹,蕨类植物的形状,大树,高山,云朵,人体的血管分布,都是不错的例子。

  好奇的是,既然分形是描述自然界最本质的一种模型,为什么有如此多的事物无法用分形解释?宏观世界到微观世界的切换,有如此多的事物是不具有自相似性的,要分形有何用?

  直到,影片阐述到的分形带来的工业界的革命性的几个发明创造。

  著名动画制片商,美国皮克斯公司的创始人洛伦·卡彭特,用分形理论第一次用电脑绘制出让人瞠目的3D山峦巨石,继而有了后来的,Star Trek系列里的外星球的3D模型,有了现在的几千亿的电影市场。

  无线电领域的分形天线设计。如果你拆开手机的外壳,观察用于信号接收的天线,你会看到优美的自相似分形。为什么这样设计?分形能让你在狭小的空间内无限扩展(工艺允许的情况下)长度,从而解决了便携式的问题。另一个顺带的优点,有谁知道分形的设计能让天线更好地接受到不同频段的信号?!

  这样两个开创性的,由分形理论的发展而启发的创造,足以说明分形模型的现实意义。不禁感叹,一切外表看起来简洁而优美的事物,总是产生不可忽视的价值和意义。有谁不承认,简洁本身便是一种美呢!而分形,由简单的起点重复之后演变出的不可预期的无数结果,便是这样一种简洁的美爆发出来的巨大力量。可叹。可赞。

  《寻找隐秘的维度》影评(三):全片概要(全剧透,方便记忆和回忆)

  分形几何:揭示大自然的潜在秩序,把自然转换成数学语言:那些看似没有规则、混乱的自然产物其实由简单的数学规则编排。真正的读懂自然。

  1.分形数学绘制山脉图形(由大小三角组成);

  2.分形数学组成树,每一次分叉都是上一次的缩小版本;

  3.古典数学看世界的方式是图形的平整性,分形几何学介于二维到三维中间,看世界的方式是粗糙性(roughness):看似不规则的图形实则有规律,所以被古典数学家排斥排挤;

  4.分形数学看Hokusai的画(浮世绘画家);

  5.The Koch Curve was a paradox. To the eye, it is finite/ mathematically, infinite;

  6.运用于测量海岸线,之前测量海岸线测量单位越小,海岸线越长。分形几何学可以测量海岸线的roughness,这就涉及了数学的另一概念:dimension;

  7.Julia Set(不停将产出的新答案代入同一个公式形成的集合),以前是手算,现在机算,得出公式和图形:f(z)平方=z平方+c;The Mandelbrot Set;一个像甲壳虫一样的图形由此成为分形几何标志性图腾;

  8.运用于电影特效(如熔浆splash);

  9.发现者认为fractals可用于准确测量自然形状,用计算模拟自然形态如大河流域模型、云层的移动、生长区域,生态系统(这些是古典数学和几何学的禁区,它们做不到);

  10.用于无线电接收天线,通过分形,可以使接收线变小而且接收range变大,解决了蓝牙wifi等各有各的频率那么手机上要装很多天线的问题;

  11.用于心脏研究,心脏的跳动;

  12.用于理解眼睛为啥能一下子看到那么多;

  13.用于理解身体保持平衡,每一个部分都在动;

  14.用于癌症研究:用分形概念建模绘制出血液流过血管的图形,流过健康的血管那个图形像树,流过有肿瘤的血管那个图形chaos;

  15.解释了为什么大型动物能量转化率高于小型动物,生物网络质量与能量的分形,简单的基因序列就可以做到;

  16.用于测量热带雨林吸收二氧化碳量,通过测量一棵树。

  《寻找隐秘的维度》影评(四):寻找隐藏的维度

  曼德尔布洛特集

  科赫雪花

  分形应用

  用于探知为何体积越大单位所需能量越少,即E=M的3/4方。

  用于解决无线通讯中如蓝牙、无线通讯、wifi等需要单独频率但避免多个天线的应用

  用于检测心脏健康。

  三年前看过的纪录片,这是我——一个理科不好的同学对于自然科学最后的反扑,因为硬想要深刻所以觉得这部显得平淡,其实放开了心态看的话,就只要坐着感叹好美啊好美啊好奇妙啊就可以了,科学原理乃至现实应用不妨交给科学家们来做。

  《寻找隐秘的维度》影评(五):Hunting The Hidden Dimension 观后感

  The film is about fractal geometry. Someone calls fractal geometry 'the natural dynamics of everything' (a video title, 2011, available at https://www.youtube.com/watch?v=yUM7e0tIFi0). Why? Because it explains the shapes of everything in the nature: why the British coastline looks like that, why mountains looks like that, why the trees look like that, why the vessels in the body look like that, ect., etc..

  Drawing on the former argument, fractal geometry could help us to understand the underlying order governed by simple mathematical rules, I have another question: is this process reversible, i.e., could the setting of rules help generate complex ideal orders? In my own field, urban planning and design, I acknowledge that some scholars have studied how, or if it is possible, a set of simple rules may generate ideal urban form (Alexander, 1966; Marshall, 2009). However, city is formed by both controllable and uncontrollable, visible and invisible forces. And the urban form becomes more and more complex, and the urban problems continuously emerge with the increasing complexity of our society. In my view, the study of ideal urban forms, no matter by what means, is something similar to the system dynamics mentioned by Meadows et al. in their book 'The Limits to Growth' - a game of idealism.

  空城

  6 April, 2014

  Film available at https://www.youtube.com/watch?v=s65DSz78jW4 ;

评价:

[匿名评论]登录注册

评论加载中……