How to Solve It读后感锦集
《How to Solve It》是一本由G. Polya著作,Princeton University Press出版的Paperback图书,本书定价:USD 18.95,页数:288,特精心从网络上整理的一些读者的读后感,希望对大家能有帮助。
《How to Solve It》精选点评:
●在图书馆翻了一遍(今天实在时昏昏欲睡),要是高中时看就好了,可惜一切都晚了。
●好书
●没有传说中的那么好
●不仅仅要知道如何使用算法比如分治法、递归法,还要知道这些算法是怎么由数学家想出来的。
●just how to solve problem!
●在图书馆抢读的。
●注重思考的过程,而不是结果。
●书的内容自然是非常好,但是有些啰嗦,看起来并不愉快。
●!!!!
●弃了
《How to Solve It》读后感(一):思维导图 | How to Solve It - A New Aspect of Mathematical Method By Georg Polya
这本书实在是值得反复阅读,其中的问题都可以迁移到真实世界。先放一张思维导图。
思维导图 | How to Solve It - A New Aspect of Mathematical Method By Georg Polya图片信息:小猫妮制图,更多作品可搜索公众号「猫妮的思维小屋」,制图工具是iThoughts。
数学思维,值得应用在很多场景。看似在说如何解题,实则讨论各类问题解决的基本思路。从理解问题到回顾检查,每一个环节每一个问题,都是环环相扣。数学思维,可以是一种理解世界的方式。
当我们以为自己「没有办法」的时候,重新审题,重新盘点自己所拥有的资源和数据,说不定就会有新发现。当我们以为自己难以解决的时候,增加一条辅助线,增加一个思考的维度,问题可能又一次迎刃而解了。
这哪是做数学题,这是真实生活的映射啊!
详细感受和收获待补
《How to Solve It》读后感(二):通杀思维和创新的内功心法
引用某书评的说法,这不是某种具体武功的秘籍,而是统领的内功心法。
小时候没有读过非常可惜。对自己思维有很大帮助,对老师有巨大帮助,我想对家长也是一样的巨大帮助。强烈推荐。
最关键的,这些思维的方法不光是针对数学的,虽然作者的例子是初等数学。在quantitative science的应用自然不用说,其他自然科学,甚至管理或者business方面我觉得应用都会是类似的。看了这本之后发现很多如今讲innovation/idea generation的书都相当于是这本书的应用。可能又是我law of instrument了,我觉得把visual thinking, 和innovation design这些方面都串起来了。
新点子新解法一般不是凭空出来的,总是受了其他东西的启发。也就是说想出点子,做的不是填空题,而是选择题。至于选项来自什么地方,多快能narrow down to the few right choices, 则是看各人功力和taste。比如借助旁的不相关领域,比如利用不同人看问题角度不一样,本书的心法就是帮助人用一个systematic的方法去遍历列举出可能的选项。而选择正确选项,就需要一定积累,能intuitively感觉哪些更靠谱。
这本很老的书的确是内涵很多,如今流行的左脑+右脑思维,其实书里也不断的提及。做几何题的时候,的确是脑子里面出现各种动画模拟变量允许变化的范围。证明的过程是逻辑的,线性的,严密的,但是首先在mind's eye里面勾画出各种可能和变化,让自己心里先“看到”解法,这个过程是直观的非线性的。这本书就好像是定义了一个meta图库,可以帮助自己思维过程里面主动去遍历图库里面大概类型。
至于书的大意,这里有很好的总结:http://book.douban.com/review/3320503/
如果不这样去思维,而只是一味的解题,题海(我自己从前就是这样,sigh),就是只有武功的招式,而没有内功。真遇到劲敌就不行了。(我自己现在就是这样的sigh)
对我个人来说,最重要的是解题完毕的回顾这步。以后多多注意。
《How to Solve It》读后感(三):纸上得来终觉浅,绝知此事要躬行
# How to solve it?
## 1 【理解】问题
首先,不应该草草先去动手去解问题,而是应该先去理解问题。至少是从【表面】来理解问题,比如说基本的三个标志,unknown、data、condition,这三个得知道。 (see ->【*what is the unknown*】、【*condition*】、【*problems to find,problems to prove*】)。 知道自己需要求什么,自己手中的条件有哪些,能够清晰的复述问题(也许此时的问题,仍然有一些名词)。
## 2 复述问题(restate the problem)
复述问题是非常的关键!这一步应该是你动手实现**之前**。
复述问题是考验你自己是否理解这个问题,你应该尽量**少用**专业名词,尽量通过**白话**来表述问题。 你应该搞懂或者清晰的说出来问题中名词的**含义**(see-> *Definition*),用白话再辅以你自己画的图例(see ->*Draw a figure*),来表述问题。
比如说,问题是Construct the point of intersection of a given straight line and a parabola of which the focus and the directrix are given.
因为你知道抛物线是一条轨迹,这上面的点离焦点和准线距离一致。 再通过画图,你得出,“P is a point on the line c such that PF = PQ.”。
具体see -> * definition example 3*
**==再强调一遍==** 复述你的问题,极其重要,必须在准备实现你的solution**之前**做到。
## 2 相似的问题
第一个应该要想的就是,是否有相似的问题? 是否可以利用当时的结果或者方法?(see -> 【*Do you know a related problem?*】、【*Have you seen it before?*】、【*here is a problem related to yours and solved before*】)
首先盯着unknown来看问题(see -> 【*look at the unknown*】),根据unknown的不同划分两种
### unknown相同
如果unknown相同,那么回想之前的解法,照搬过来。
### unknown不同但是相似
如何定义相似? 回想之前已经解过的问题,他与现在要求的问题【至少】在其他两个基本的标志,data、condition上是相似的(当然也可以是解法相似)。记之前结果的题目为辅助问题(see -> 【*auxiliary problem*】), 我们已经知道auxiliary problem的答案,如何在auxiliary problem与现在的问题产生【联系】?
+ 1 引入auxiliary elements,即辅助元素来产生联系(see -> 【*Auxiliary elements*】) ,比如说之前的解法是在三角形上的, 现在没有三角形,怎么办?那么【创造】出一个三角形。
+ 2 现在【还需要】哪些data或者condition,才能从auxiliary problem 的答案得到现在的答案? 这些元素是否可以从现有的条件下得出? (see ->【*could you derive something useful from the data?*】【*Did you use all the data?*】)
在【perfectly stated】problem中, 是给足了condition和data的。(see -> is it possible to satisfy the condition?)
### 无法找到相似的问题
再换个角度去想、甚至是**发明**一个相似的问题
## 3 检查
## 4 回顾
这一点是经常容易忽视的,但是也是非常必要的一个步骤。 当你得到了一个解法时候,此时的你比刚开始接触题目时候,对问题应该有了**新的理解**,此时回顾整个解法和你的题目,应该有不一样的看法,
一般来说有两种情况,当然也可以不分。
### 解法过于冗长
当你的solution比较长,自己又觉得比较难以解释的时候,可以试着分解一下步骤,或者说分解一下问题,解法的那部分对应那部分的题目。(see -> *Decomposing and recombining* )
又或者思考自己的解法用了题目那些data、condition,是否有没有用到的?(see -> *Did you use all the data?*) 又或者**回到定义**是否可以得出新的想法? (see -> *Definition*)
### 正常的解法
回顾解法,总结经验。 尝试使用泛化、特殊化(see ->*generalization*, *specialization*)等手段检查、创造新的问题(see -> *variation of problem*)
# 最后
**纸上得来终觉浅,绝知此事要躬行**
以上的方法论其实都是建立在**experienced problem solver**上的,要么你解得题多,要么你看别人解题多,你必须具备一定的基础,然后在解题时候去应用方法论。
还是那句话,**刻意训练,重复训练**。
《How to Solve It》读后感(四):边缘数学家的自我修养
ook 32: How to solve it
July NJ, 2019Regardless of what is my current status of career development, being a borderline mathematician is my last pride and light. In order to avoid the story beginning as “Once, i studied mathematics …” , I am keeping working on math problems, even some simple algebraic problems. After all, the only way to understand math by is by doing maths. At least, I m reading maths books.
Without the loss of generality, How to solve it concluded a 4-Step-Method to solve a problem.
Preview: Get acquaintance with the problem( background knowledge)Planning: Make a Plan for solving the problemSolving: Carry out the plan to solve the problemReview: Check the answers, think about is there another way to solve the problem?Then i thought this 4-step method is ubiquitous, it can be used anywhere anytime, in music, workout or life planning. I think I used the 4-step method partially in my previous academical years. What I am missing is 1. Preview and 4. Review. Now I really think Review is crucial in learning, or I m just repeating my mistakes again and again. I didn’t get any worse, but I won’t get any better without the Review Step.
Music :
Listen to Recordings, be familiar with the flow of movementStudy the music, make a plan for fingering and bow distributionCarry out the bow distribution and expressionAnalyze the self-recording, what could be improved and don’t forget to applaud for the part we did good!I enjoy the author’s philosophy, celebrate the tiniest successes!If we can’t figure out a hard problem, (1/x)sin(x) is continuous, can we proof sin(x) is continuous first? At last, the fervent wish counts, too! most of times, I quit thinking and copied others solution besides I m not confident enough, I didn’t think one problem mattered. One problem after another, qualify ends up to be my Waterloo. Luckily, we have the expression: 卷土重来未可知。
Sparkling Lines:You may experience the tension and enjoy the triumph of discovery a taste for mental work and leave their imprint on mind & character for a lifetime a great amibition deeper curisority, a desire to understand the ways and means, the motive and procedures of solutions in satu nascendi a plan of the solution, carrying out the plan looking back check the argument To understand mathematics means to be able to do mathematics Heuristic draw figures this idea may emerge gradually seeing and proving use of all relvent data variation of the data, symmetry, analogy what i can gain by doing so? analogy : a sort of similarity individual thinking! that’s important Auxillary elements Intelligent readear think the motive behind each step nevertheless you should be greatful for all new ideas it is safe riding at 2 anchors Exploit your sucess going back to the definition is an important operation of mind you settle down to work seriously you throw your whole personality if there is a great promis if your promise is set, you stick to it, you seek for little success carrying out your plan of the solution at each step,can you see clearly each step is correct? could you solve a part of the problem? always use your own brains first proves to prove vs problems to find analogy, gereralization, specialization, decomposing, recombing Solve the part of the problem? Keep the Ball Rolling Rules of Style: Control yourself, when you have 2 things to say, say first one then the other. not both at the same time clearly expressible signs less difficult, less ambitious, special, auxiliary problem as a stepping stone in solving the more difficult , more amibitious, general, original problems Past ages regarded a sudden good idea as an inspiration, a gift of the gods. You must deserve such a gift by work, or at least a feverent wish! mathematician should discover his likes and dislikes, his taste, his own line. Choose the problems which are in his line mediate upon their solution , and invent new problems. He must concentrate upon the problem,he must earnestly to obtain its solution The open secret to a real success is to throw your whole personality into your problem Intelligent readers/listeners 1.present step is correct 2.See the purpose of present step Geometry is the art of correct reasoning on incorrect figures Diligence is the mother of good luck Perseverance kills the game An oak is not felled at one stroke, if at first, you dont succeed, try, try again we must do as we may if we can’t do as we would what a fool does at last, a wise man does at first.Many years ago, when Huang finished his Ph.D, he told me , 知之不如好知,好知不如乐知。
就是说对知识永远有好奇心和开心。 后来他的女儿叫 怡知 寓意为希望她有乐观学习知识的态度,我好喜欢这个名字。也好喜欢那些学数学的日子!
【How to Solve It读后感锦集】的相关文章
- 《The Man Who Solved the Market》读后感锦
- Those Who Leave and Those Who Stay读后感
- How to Live on 24 Hours a Day读后感10篇
- 《How to Live on 24 Hours a Day》读后感1
- 《How to Write Short》读后感摘抄
- 《WOW! Photoshop插画设计》的读后感大全
- 《PHOTOSHOP CS/CS2 WOW!BOOK》经典读后感有
- How an Economy Grows and Why It Crashes读
- 更多"How to Solve It读后感锦集"的相关推荐